Needle Steering and Model-Based Trajectory Planning
نویسندگان
چکیده
Needle insertion for percutaneous therapies is formulated as a trajectory planning and control problem. A new concept of needle steering is developed and a Needle Manipulation Jacobian is defined using numerical needle insertion models that include needle deflection and soft tissue deformation. This concept is used in conjunction with a potentialfield-based path planning technique to demonstrate needle tip placement and obstacle avoidance. Results from open loop insertion experiments are provided.
منابع مشابه
Drilling Trajectory Prediction Model for Push-the-bit Rotary Steerable Bottom Hole Assembly
The study of rotary steering drilling technology is currently one of the hot topics in the drilling engineering field. It requires accurate well trajectory control instructions when rotary steerable tools are applied to achieve the well trajectory control goal. A drilling trajectory prediction model will benefit this progress. According to the continuous beam theory, a mechanical model of push-...
متن کاملFlexible Needle Steering and Optimal Trajectory Planning for Percutaneous Therapies
Flexible needle insertion into viscoelastic tissue is modeled in this paper with a linear beam supported by virtual springs. Using this simplified model, the forward and inverse kinematics of the needle is solved analytically, providing a way for simulation and path planning in real-time. Using the inverse kinematics, the required needle basis trajectory can be computed for any desired needle t...
متن کاملRobotic Needle Steering: Design, Modeling, Planning, and Image Guidance
This chapter describes how advances in needle design, modeling, planning, and image guidance make it possible to steer flexible needles from outside the body to reach specified anatomical targets not accessible using traditional needle insertion methods. Steering can be achieved using a variety of mechanisms, including tip-based steering, lateral manipulation, and applying forces to the tissue ...
متن کاملThe International Journal of Robotics Research
As a flexible needle with a bevel tip is pushed through soft tissue, the asymmetry of the tip causes the needle to bend. We propose that, by using nonholonomic kinematics, control, and path planning, an appropriately designed needle can be steered through tissue to reach a specified 3D target. Such steering capability could enhance targeting accuracy and may improve outcomes for percutaneous th...
متن کاملRobert J . Webster III
As a flexible needle with a bevel tip is pushed through soft tissue, the asymmetry of the tip causes the needle to bend. We propose that, by using nonholonomic kinematics, control, and path planning, an appropriately designed needle can be steered through tissue to reach a specified 3D target. Such steering capability could enhance targeting accuracy and may improve outcomes for percutaneous th...
متن کامل